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We examine theoretically the role of spin waves on current-induced domain wall dynamics in a ferromag-
netic wire. At room temperature, we find that an interaction between the domain wall and the spin waves
appears when there is a finite difference between the domain wall velocity ẋ0 and the spin current u. Three
important consequences of this interaction are found. First, spin-wave emission leads to a Landau-type damp-
ing of the current-induced domain wall motion toward restoring the solution ẋ0=u, where spin angular mo-
mentum is perfectly transferred from the conduction electrons to the domain wall. Second, the interaction leads
to a modification of the domain wall width and mass, proportional to the kinetic energy of the domain wall.
Third, the coupling by the electrical current between the domain wall and the spin waves leads to temperature-
dependent effective wall mass.
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I. INTRODUCTION

The advent of giant magnetoresistance, magnetic tunnel
junctions, and spin-transfer torque in magnetic heterostruc-
tures has led to proposals of novel applications in which
magnetic domain walls are manipulated by electrical
currents1 instead of magnetic fields.2,3 Experimental studies
based on such concepts have been made possible by vast
improvements in nanofabrication techniques, which allow
for more precise control over domain wall nucleation and
propagation.4,5 While current-driven wall motion is an im-
portant means of realizing potential applications, the thresh-
old current for such motion still remains prohibitively high
for use in integrated circuits.6 As a consequence, strategies
are being actively sought to simultaneously achieve low
threshold current densities in combination with high-speed
domain wall motion.

From the point of view of fundamental physics, current-
driven domain wall motion has attracted much interest be-
cause it associates a complex spin-dependent transport prob-
lem with nonlinear magnetization dynamics. This is equally
true for ferromagnets based on 3d transition metals, such as
iron, nickel, cobalt, and associated alloys, as for dilute mag-
netic semiconductors such as �Ga,Mn�As. From a theoretical
perspective, the problem lies in computing the correct
torques exerted on the magnetization by the conduction-
electron spins. If one assumes that the conduction-electron
spins, propagating with an effective drift velocity u, track
perfectly the local magnetization along their passage through
the domain wall, one finds an additional torque on the mag-
netization M of the form

Ta = − �u · ��M , �1�

which is often referred to as the “adiabatic” contribution of
spin transfer. This term is well understood and has been re-
produced from different transport theories.7–11 The magni-
tude of the effective drift velocity is given by u

= jPg�B / �2eMs�, where j is the charge current density, P is
the spin polarization, �B is the Bohr magneton, e is the elec-
tronic charge, and Ms is the saturation magnetization. An
outstanding problem of importance concerns the origin of the
so-called “nonadiabatic” contribution12

Tna =
�

Ms
M � ��u · ��M� , �2�

which has been found to be necessary to describe some ex-
perimental data. Ms is the saturation magnetization and the
dimensionless coefficient � characterizes the magnitude of
the nonadiabatic contribution.

It is possible to gain good insight into the physics of
current-driven motion through the one-dimensional �1D�
model �1DM� for domain wall dynamics. This model was
much studied in the 1970s �Refs. 13 and 14� and later
adapted to the case of exchange torques due to coupling to
conduction electrons by Berger15–17 and Tatara and Kohno.7

The 1DM is derived from the Landau-Lifshitz-Gilbert �LLG�
equation of motion for magnetization dynamics with the
current-driven terms,18

�M

�t
= �0Heff � M +

�

Ms
M �

�M

�t
+ Ta + Tna, �3�

where �0 is the gyromagnetic constant and � is the Gilbert
damping constant. A critique concerning the relevance of
Gilbert damping for domain wall motion has recently been
presented by Stiles et al.19 By assuming that the domain wall
shape remains rigid during propagation, it is possible to pa-
rametrize the dynamics in terms of only two conjugated co-
ordinates: the domain wall position x0 and its conjugate mo-
mentum p. By assuming that the external forces acting on the
wall are sufficiently weak such that the wall shape remains
rigid, the equations of motion in this limit can be written as7
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dp

dt
= −

2�K�m

S

dx0

dt
+

2�K�m

S
u + fze + fpin, �4�

dx0

dt
= u +

�S

2K�m

dp

dt
+

p

m
, �5�

where m is the domain wall mass, S is the spin angular
momentum at each individual magnetic site, and K� is the
transverse anisotropy energy. The external magnetic field and
a pinning potential, due to intrinsic defects or artificial pin-
ning centers, generate the additional forces fze+ fpin on the
domain wall, respectively. The first equation �4� relates the
domain wall acceleration dp /dt to the total force. The second
equation �5� relates the domain wall velocity to the domain
wall momentum. Neglecting damping, one sees that p is re-
lated to the relative velocity ẋ0−u through the Döring mass
of the domain wall m= p / �ẋ0−u�.

The importance of the nonadiabatic “� term” is made ex-
plicit in Eq. �4�, where its contribution as an effective mag-
netic field can be immediately seen. It has been shown in
previous studies that the existence of � leads to different
qualitative dynamics for the wall motion.7 If 2���Hp /H�

with Hp being the extrinsic pinning field and H� being the
transverse anisotropy field the domain wall depins for u
�	�0Hp /2�. Therefore in the weak pinning limit, the larger
is the � term, the smaller is the critical current density.20

However, as we have indicated above, the physical origin
of this nonadiabatic term is still an open issue subject to
spirited debate.21 In one line of inquiry, different authors
have sought to associate � with the viscous damping coeffi-
cient � since both parameters describe dissipative
processes.22 Barnes and Maekawa23 contended that � and �
are equal because of Galilean invariance, while Kohno
et al.,24 Duine et al.,22 and Piechon and Thiaville25 found that
� and � are not equal in general. In a different picture, Tatara
and Kohno7 associated � with ballistic domain wall resis-
tance, which is independent of � and depends only on the
transport properties of the system. Much of the difficulty in
reaching a consensus is therefore related to the complexity in
defining the � term theoretically and in measuring it experi-
mentally.

The present study is motivated by the hypothesis that the
interaction between the domain wall and spin waves pro-
duces a term similar to the nonadiabatic term but in the pres-
ence of only the adiabatic component of spin transfer. The
role of spin waves on field-driven domain wall dynamics has
been examined by a number of authors in the past,26–29 but
their role on current-driven wall dynamics has not been stud-
ied in much detail theoretically. While most theories on the �
term have focused on the transport properties of the conduc-
tion electrons, few studies have considered the motion of the
nonequilibrium magnetization by taking into account the
fluctuations. Nevertheless, the interplay between spin waves
and the domain wall should be important for at least two
reasons. First, thermal spin waves account for a decrease in
the magnetization which can be important if the system tem-
perature approaches the Curie temperature. This is certainly
the case in dilute magnetic semiconductors. Second, the spin
waves act as a thermal bath with which energy can be ex-

changed with the domain wall. Indeed, the importance of
spin waves as a channel for energy dissipation in magnetic
system has long been recognized. In the context of the fer-
romagnetic resonance, for example, two-, three- and four-
magnon processes have been shown to be crucial for explain-
ing resonance linewidths of ferromagnetic insulators.30 In the
context of domain wall motion, Bouzidi and Suhl28 showed
that power is diverted from the domain wall motion through
the amplification of some thermal spin waves.

Recent experimental studies suggest that current-induced
domain wall motion may depend strongly on the
temperature.31–36 Experiments on current-induced domain
wall motion in metallic devices are generally performed at
room temperature, but recently several measurements have
been reported over a range of temperature from several doz-
ens to a few hundreds of degrees kelvin.32 Studies on the
temperature dependence are likely to bring detailed informa-
tion on the current-induced domain wall dynamics. The ac-
tual temperature of a ferromagnetic wire along which a
charge current flows is generally modified by Joule heating
and may vary much from one sample to another depending
on the efficiency with which heat is drained out. As the cur-
rent density required for driving a domain wall in a ferro-
magnetic metal is usually quite high, j�1012 A /m2, the in-
crease in the temperature due to Joule heating may even
approach the Curie temperature Tc,

35 which would lead to
large changes in the magnetization. Similar heating effects
may also appear in nanowires involving magnetic
semiconductors.33,34 Laufenberg et al.32 found current-driven
domain wall motion to be less efficient by 50% for tempera-
ture increases of 200 K. These authors suggested that this
loss of efficiency is due to the excitation of spin waves.

In this paper, we study the role of spin waves on current-
driven domain wall motion by extending the approach used
by Bouzidi and Suhl,28 which associates some basic ideas
from the theory of solitons37 with spin-wave theory.26,38,39

The coupling between the domain wall and the thermal bath
of the spin waves, which originates from the kinetic part of
the spin Lagrangian,40,41 has a number of consequences on
the current-induced domain wall motion. It leads to a differ-
ent dissipation channel, whereby magnons can be absorbed
or emitted as the domain wall propagates. This dissipation
channel relaxes the domain wall dynamics toward the solu-
tion ẋ0=u, where the domain wall velocity and the
conduction-electron spin current are identical and Galilean
invariance is restored. This dissipation process is somewhat
analogous to Landau damping in plasmas.42 The coupling
between the spin waves and the current-driven domain wall
also results in stochastic forces in addition to damping. These
stochastic forces are weakly correlated at the time scale of
the domain wall motion and therefore can be treated as white
noise. In the absence of Galilean invariance, u� ẋ0, the flow
of the spin current across the wire leads to a reduction in the
domain wall width, which renormalizes the system energy.
This renormalization can be reinterpreted as a modification
of the domain wall mass, which becomes temperature depen-
dent through the interaction with the spin waves.

This paper is organized as follows. The spin-wave eigen-
modes of the domain wall are determined in Sec. II. In Sec.
III the one-dimensional �1D� model of current-driven domain
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wall dynamics is generalized to account for spin waves. In
Sec. IV, the damping of domain wall motion through radia-
tion of magnons is presented. This radiation leads to both
�-like and �-like terms, which are both proportional to the
domain wall kinetic energy p2 /2m. The change in domain
wall width by the electrical current is calculated in Sec. V
and subsequently interpreted as a renormalization of the do-
main wall mass. The response of the spin waves to the do-
main wall displacement and to the spin-transfer torque is
investigated in Sec. VI. The renormalization of the domain
wall mass, as a result of this response, is then estimated
numerically. In Sec. VII, we present some discussion and
concluding remarks, as well as offer suggestions for new
experiments that are designed to test the main results of our
theory. The Green’s functions used for our calculations and
the integral equation used for determining the spin-wave re-
sponse are presented in the Appendix.

II. EIGENMODES OF A BLOCH DOMAIN WALL

We consider a ferromagnetic wire lying along the x axis
with an axis of easy anisotropy Ku along the x direction and
an axis of hard perpendicular �transverse� anisotropy K�

along the z direction �see Fig. 1�. The orientation of the
localized spins is described in spherical coordinates within a
continuum approximation by means of a field m�x , t�
= �sin 
 cos � , sin 
 sin � , cos 
�, where 
�x , t� and ��x , t�
have a space and time dependence. In the absence of a
conduction-electron charge current, the magnetic energy H
of the system is

H =� d3r

a3 �A���
�2 + sin2 
����2�

− Ku sin2 
 cos2 � + K� cos2 
	 , �6�

where A denotes the exchange coupling. In the following we
assume K��Ku. This condition applies well to thin Permal-
loy nanowires whose in-plane �magnetocrystalline� anisotro-
pies are very small compared to the perpendicular �demag-
netizing� energy. The anisotropy constant Ku describes the
shape anisotropy in the plane of the wire and is as small as a
few oersteds, whereas the anisotropy constant K� describes
the demagnetizing field and is about 4
Ms�10 kOe.

The equilibrium magnetic configuration can be found by
minimizing the energy functional by using the conditions


�Hm

�





0,�0

= 0, 
�Hm

��




0,�0

= 0, �7�

which lead to


0 =



2
, �8�

A
�2�0

�x2 = Ku sin �0 cos �0. �9�

The solution corresponds to the well-known Bloch domain
wall with a characteristic width of 	=�A /Ku and energy �
=4KuNdw, where Ndw denotes the number of magnetic sites
inside the domain wall. The domain wall profile can be ex-
pressed in terms of the spatial coordinate as sin �0
=sech��x−x0� /	� and cos �0=−tanh��x−x0� /	�.

To account for thermal fluctuations, we consider small
deviations ��
 ,��� about the static configuration �
0 ,�0�.
We expand H up to the second order with respect to �
 and
�� to obtain

�H =
Ku

a3� d3r��
�D + ���
 + ��D��	 . �10�

In agreement with earlier works,26,28,29 we find that the en-
ergy of the thermal fluctuations is described by a
Schrödinger-type operator D=−	2�x

2−2 sech��x−x0� /	�+1
with �=K� /Ku. The eigenvalues of D are 0 and �k=1
+k2	2. The zero-eigenvalue solution �loc,

�loc�r� =
1

�2Ndw

eik·r sech� x − x0

	
� , �11�

corresponds to the Goldstone mode of the system since the
energy of the static wall is independent of its position x0. In
other words the �loc part of �� contains no energy �locD�loc
=0. We can avoid expanding �� on the Goldstone mode by
elevating domain wall position to a dynamical collective co-
ordinate x0�t�.37 The system is not rotationally invariant
about the wire axis because of the strong perpendicular an-
isotropy K�. As such, the �loc part of �
 carries a finite en-
ergy and the wave function �loc corresponds to a bound state
of the system. In the following the amplitude of this bound
state will be noted as cloc�t�. The nonzero eigenvalues of
operator D correspond to the propagating waves �k�r�,

�k�r� =
1

��kN
eik·r
tanh� x − x0

	
� − ikx	� . �12�

We have noted N as the total number of magnetic sites in the
sample. The wave functions �k form an orthonormal set

� d3r

a3 �k
��m = �k,m, �13�

which, in turn, are orthogonal to the bound-state wave func-
tion �loc, i.e.,

q

fx

z

x0

y
m

FIG. 1. �Color online� Geometry. The wire is along the x axis
and the static domain wall profile is in the �x ,y� plane because of a
strong perpendicular anisotropy along z. The spherical polar coor-
dinates are defined with respect to the z direction.

SPIN-WAVE CONTRIBUTIONS TO CURRENT-INDUCED… PHYSICAL REVIEW B 79, 174404 �2009�

174404-3



� d3r

a3 �k
��loc = 0. �14�

The wave functions �loc and �k are represented in Fig. 2.
It is convenient to expand the small angle deviations �


and �� in terms of the eigenfunctions �k via the complex-
valued variables dk through the transformation ��+ i�

= icloc�loc+�kdk�k. Using this notation, we note that the
Hamiltonian can be written as H=�+ �� /4��k���k
+� /2�dk

�dk− �� /4��dkd−k+dk
�d−k

� �	. This is not a quadratic
Hamiltonian because of the finite perpendicular anisotropy
K�, which leads to elliptical spin precession. To diagonalize
this Hamiltonian, we follow the usual prescription by means
of the Bogoliubov transformation ck=uk

+dk+uk
−d−k

� with

uk
� =��k + �/2 � ��k/Ku

2��k/Ku
, �15�

where the frequency �k is defined as

���k

Ku
�2

= �k��k + �� . �16�

By replacing dk and dk
� with the magnon operators ck and ck

�,
we obtain the quadratic spin-wave Hamiltonian

�H = K�cloc
2 + �

k
��kck

�ck, �17�

where the spin-wave energy is ��k. The mode ck has two
components ck=ck

def+ck
th, which describe the wall deforma-

tion and the thermal propagating spin-wave excitations.
Next, we quantize the system by turning the complex

variables ck
th and ck

th� into the boson operators ĉk and ĉk
†,

which obey the usual bosonic commutation relations. For the
sake of clarity, we will find it convenient to use the variables
�k=ck+c−k

� and 
k= �1 / i��ck−c−k
� � and their corresponding

operators �̂k= ĉk+ ĉ−k
† and 
̂k= �1 / i��ĉk− ĉ−k

† �. The small
angle deviations �� and �
 are then expressed in terms of �k
and 
k as

���r� = �
k

�k�k
��k�r� , �18�

�
�r� = cloc�loc�r� + �
k


k�k

�k�r� . �19�

The parameters �k
�= �uk

++uk
−� /2 and �k


= �uk
+−uk

−� /2 represent
the ellipticity of the spin precession. If the system were ro-
tationally invariant about the wire direction K�=0, then spin
precession would be circular �k

�=�k

=1 /2.

Lastly, it is convenient to renormalize the bound-state am-
plitude cloc and introduce a new variable p as

p = −
S�2Ndwcloc

	
. �20�

We will see in Sec. III that p�t� represents the domain wall
kinetic momentum.

III. GENERALIZED 1D MODEL OF BLOCH WALL
DYNAMICS

A. 1D model without spin waves

As we will show in subsequent sections, the deformation
of the domain wall due to spin-transfer torques is described
by both the bound state cloc and the propagating states ck.
However, we will disregard the spin-wave modes ck to begin
with in this section and discuss rather the role of the sole
bound-state amplitude cloc� p�t� on the domain wall dynam-
ics. We show that we recover the usual one-dimensional
model of Bloch wall dynamics without spin waves.

In the absence of the nonadiabatic spin-transfer term, it is
possible to derive the equations of motion using a Lagrang-
ian formalism. This is particularly well adapted to the present
problem in which the magnetic system is subject to con-
straints related to the presence of the domain wall. The total
Lagrangian for the magnetic system is the difference be-
tween a “kinetic” �or Berry phase� term,

Lkin�u = 0� = S� d3r

a3 �1 − cos 
��t� , �21�

and the magnetic energy of the system H. The inclusion of
the adiabatic spin-transfer term appears as a moving refer-
ence frame at a velocity equal to the effective drift velocity
of the spin current u. This is accounted for by replacing the
time derivative in the kinetic part of the Lagrangian with a
convective derivative,40,43

Lkin = S� d3r

a3 �1 − cos 
��u�x + �t�� . �22�

To zeroth order in the deformation, the kinetic part of the
Lagrangian does not contribute to dynamics and can be ne-
glected. The first-order term of Lkin with respect to the de-
formation is

Lkin
�1� = S� d3r

a3 cloc�loc�u�x + �t��0,

=− p�u − ẋ0� . �23�

The overall magnetic energy is the sum of the static domain
wall energy � and the dipolar energy K�cloc

2 . The latter can

0

1

−10 −5 0 5 10−5

0

5
k=1/2λ
k=4λ

FIG. 2. �Color online� Wave functions �2Ndw�loc�r� and
��kN�k�r� about the domain wall at x0 for kx=1 /2	 and kx=4 /	.
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be reinterpreted as the kinetic energy p2 /2m of the domain
wall,

Hm = � + K�cloc
2 = � +

p2

2m
,

where m=NdwS2 /K�	2 is the Döring mass. Finally the full
Lagrangian is obtained as

L = − p�u − ẋ0� − � − p2/2m . �24�

Gilbert or viscous damping can be accounted for by includ-
ing the dissipation function

F = �S� d3r

a3 �
̇2 + �̇2 sin2 
� �25�

in the equations of motion. By assuming the “rigid” domain
wall profile 
=
0�t� and �=�0�t�, the dissipation function F
can be readily rewritten as

F = �S� ṗ2	2

2S2Ndw
+

2Ndwẋ0
2

	2 � . �26�

The equations of motion for the domain wall coordinates q
= �x0 , p� are obtained by means of the Euler-Lagrange equa-
tions

�L
�q

−
d

dt

�L
� q̇

=
1

2

�F
� q̇

. �27�

By combining the Lagrangian functional L �24� and the dis-
sipation function F �26�, the Euler-Lagrange equations lead
to

dp

dt
+

�2K�

S
m

dx0

dt
= 0, �28�

dx0

dt
− u −

�S

m2K�

dp

dt
=

p

m
. �29�

Thus, the well-known equations of motion of the one-
dimensional Bloch domain wall, Eqs. �4� and �5�, are recov-
ered. We conclude that the bound-state amplitude p�t� can be
interpreted as the domain wall momentum as long as the
propagating spin waves are neglected.

B. Interaction between domain wall and propagating modes

The expansion of the full Lagrangian L up to the first
order in the spin waves �23� involves only the bound state
and does not depend on the propagating waves. The interac-
tion between the propagating waves and the domain wall
arises from the second-order expansion

Lkin
�2� =� d3r

a3 S�
�u�x + �t��� ,

Lkin
�2� = S�

k

1

4

k�̇−k + S�u − ẋ0�

�
− �
k

vk
p

S
�k + �

k�m
vkm
k�m + �

k

kx

2
ck

�ck� .

�30�

The coefficient vk describes a coupling between the bound
state �0 and the propagating waves,

vk =



2

1
��kN

�k
� sech� kx	


2
� . �31�

The coefficient vkm describes a coupling between the differ-
ent propagating waves,

vkm = �k

�m

� i


2

�kx	�2 − �mx	�2

L��k�m

csch�
	�kx + mx�
2

��k�,−m�

�32�

with L=Nxa as the length of the wire. Coefficients vk and
vkm are shown in Fig. 3.

vk becomes negligible for kx�1 /	, which means that the
term −�u− ẋ0��kvkp�k will mainly couple the domain wall to
spin waves with a wave vector kx on the order of 1 /	. In
addition, the coefficient vkm is large for long-wavelength spin
waves k�1 /	 ,m�1 /	 and is roughly proportional to kx
−mx. Thus the coupling term S�u− ẋ0��kmvkm
k�m will lead
to a significant interaction with spin waves having kx�−mx
� �1 /	. In some sense, the latter coupling term represents
reflection of the propagating spin waves from the domain
wall.

The quadratic term S�u− ẋ0��k�kx /2�ĉk
†ĉk represents a

shift in the dispersion relation of the magnons. As such, the
frequencies of the magnons depend on the relative velocity
between the spin current and the domain wall,

�k → �k −
S

2
kx�u − ẋ0� . �33�

This shift may be interpreted as a Doppler effect, which was
originally put forward by Lederer and Mills44 and found re-
cently in experiment by Vlaminck and Bailleul.45 Some con-
sequences of this Doppler shift have already been investi-
gated so far, e.g., the excitation of monodomain structures by

−5
0

5
−1

0
1
0

1

2

−5
0

5
−5

0
5

−0.2

0

0.2

(a) (b)

FIG. 3. �Color online� �a� �Nvk as a function of kx and ky. �b�
Lvkm as a function of kx and mx. K� /Ku=57 for both graphs.
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a sole dc electrical current40 or as the enhancement of dissi-
pation by spin-transfer torque.46 An example of the current-
induced Doppler effect on the spin-wave dispersion relations
is shown in Fig. 4. We note that the current-driven terms can
lead to a soft mode with a nonzero wave vector kc, as indi-
cated by the dashed line in Fig. 4 for u=5	 /ns for kc	
�1.5. As pointed out by Shibata et al.,40 this would lead to
an instability in a uniformly magnetized ground state
whereby the nucleation of domains of size �
 /kc is favored.

Combining the kinetic part of the Lagrangian and the
magnetic energy, the full Lagrangian L describing the mag-
netic system is found to be

L = S�
k

1

4

k�̇−k + S�u − ẋ0�
−

p

S
− �

k
vk

p

S
�k + �

k

kx

2
ck

�ck

+ �
k�−m

vkm
k�m� − � −
p2

2m
− �

k
��kck

�ck. �34�

The classical coordinates of the domain wall are coupled to
the propagating spin waves through the interaction potential

V = S�u − ẋ0�
�
k

vk
p

S
�k − �

km
vkm
k�m� . �35�

This potential must exist because the wave functions �0 and
�k do not diagonalize the kinetic part of the Lagrangian Lkin.
As such, a finite difference u� ẋ0 between the spin-current
velocity u and the domain wall velocity ẋ0 will always give
rise to a coupling between the propagating spin waves and
the domain wall. However, if the spin transfer from the adia-
batic torque is achieved with an effective drift velocity such
that u= ẋ0, then the interaction potential V will vanish iden-
tically and, in that case, the domain wall and the spin waves
will be completely decoupled. We point out that the solution
ẋ0=u is actually satisfied if the � coefficient in the one-
dimensional model is identical to the Gilbert coefficient � or,
in other words, the conservative and nonconservative dy-
namics of the system are invariant under a Galilean transfor-
mation.

C. Force and torque

In the following, we seek to generalize the 1DM by the
inclusion of the interacting potential �35� which couples the
spin-wave modes and the domain wall. The Euler-Lagrange
equations �28� and �29� become modified by the latter and
therefore involve new terms with respect to the magnons.

By definition, the force F exerted on the domain wall is
equal to the time derivative of the domain wall momentum
dp /dt. The Euler-Lagrange equation

dp

dt
= −

�H
�x0

−
d

dt

�V
� ẋ0

�36�

indicates that F originates in both the magnetic energy H and
the interaction potential V. Let us first consider the contribu-
tion FH from the magnetic energy H,

FH = −
�H
�x0

. �37�

This force may be rewritten as

FH = − 4Ku� d3r

a3 �mz�x��x sech2�x − x0� , �38�

where �mz represents the decrease in the longitudinal com-
ponent of the magnetization �mz= ��
2+��2� /2 and is non-
zero at finite temperatures due to thermal excitations. By
inspection of Eq. �38�, we observe that FH is only finite if
�mz is odd with respect to the domain wall position
�mz�x0−x1�=−�mz�x0+x1�. This can be the case if an electri-
cal current flows through the domain wall and breaks the
symmetry of the system.

Let us now consider the force −d /dt�dV /dẋ0� that arises
from the interaction potential V. This force may be divided
into three different components: Fj, Fdef, and Fstoc. The force
Fj,

Fj = S
d

dt�km
vkm�
̂k�̂m� , �39�

originates from the coupling between the different spin-wave

modes induced by the electrical current. Because �
̂k�̂m� de-
pends on the statistics of the magnons, the force Fj is ex-
pected to depend on the temperature. The force Fdef is related
to the deformation modes ck

def �see Sec. II�. By writing �k
def

=ck
def+c−k

def�, we find

Fdef = −
d

dt
�

k
vkp�k

def. �40�

In contrast to Fj and Fdef, the force Fstoc is not deterministic
but stochastic. Its average value vanishes �Fstoc�=0 but its
autocorrelation function is finite �Fstoc�t�Fstoc�t����0. The
force Fstoc�t� may be rewritten as

Fstoc = −
d

dt
�

k
vkp�̂k. �41�

By summing all these forces together, the total force F ex-
erted on the domain wall is found to be

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5 x 10
−3

u=0
u=1 λ/ns
u=3 λ/ns
u=5 λ/ns

FIG. 4. �Color online� Dispersion relation of the magnons as a
function of the spin-current velocity u for K� /Ku=57 and � /Ku

=1.88 ns.
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dp

dt
= FH + Fj + Fdef + Fstoc. �42�

It will be shown in the following that all the forces FH, Fj,
and Fdef can be reinterpreted as a modification of the domain
wall mass.

So far we have looked at the contribution of the spin
waves to the force F but still not to the torque T. The torque
T is derived by taking the Euler-Lagrange equations with
respect to the momentum p,

ẋ0 =
p

m
+ u − �

k
vk�k�ẋ0 − u� . �43�

In addition to the spin-transfer drift velocity u and to p /m,
which represents the torque due to the demagnetizing field,
Eq. �43� involves a stochastic torque Tstoc,

Tstoc = �ẋ0 − u��
k

vk�̂k. �44�

This torque is induced by the spin waves, which increases as
a function of the relative velocity ẋ0−u.

IV. SPIN-WAVE EMISSION

In this section, we present a detailed analysis of the con-
sequences of spin-wave emission as a result of domain wall
motion. In particular, we show that such processes lead to a
dissipation mechanism that drives the domain wall velocity
toward the spin-current velocity, thereby restoring Galilean
invariance in the system. We show that spin-wave emission
also leads to a stochastic force on the domain wall.

A. Dissipation function

According to Eqs. �41� and �44�, spin waves exert a non-
deterministic force and torque on the domain walls. This is
because the domain walls are sensitive to the fluctuations of
the spin waves through the interaction potential

Vint = �u − ẋ0�p�
k

vk�ĉk + ĉ−k
† � . �45�

We know by the fluctuation-dissipation theorem that these
fluctuations necessarily lead to dissipation. As we have not
taken this dissipation into account yet, our 1DM with the
forces FH, Fj, Fdef, Fstoc, and the torque Tstoc is not fully
consistent.

The spin current supplies energy to the domain wall mo-
tion by increasing the kinetic energy p2 /2m. However a part
of this energy is lost by the domain wall and is transferred to
the lattice through a series of relaxation processes. The trans-
fer of energy to the lattice accompanying a domain wall mo-
tion is due to various channels of relaxation.47 One channel
of relaxation starts with the emission of magnons by the
excited domain wall.

Caldeira and Leggett,48 following on from the seminal
work and Feynman and Vernon,49 showed irreversibility to
arise when a moving particle is coupled to numerous degrees
of freedom. In our case, the magnetic domain wall represents

the moving particle, which propagates through a dissipative
environment represented by the thermal spin waves. The do-
main wall is described by its position x0 and its kinetic mo-
mentum p, whereas the spin-wave environment is described
by a set of oscillators,

Hbath = �
k

��kĉk
†ĉk. �46�

The bath of magnons is assumed to be always at thermal
equilibrium, which is maintained through very fast three- and
four-magnon processes and due to the interaction with
phonons. The domain wall and the spin-wave environment
are coupled to each other through the “linear” interaction
potential Vint. Notice the similarity between the interaction
Vint and the interaction between electrons and phonons in the
metals. The present system is actually formally equivalent to
the dissipative system in Caldeira and Leggett’s general
theory, which itself is in agreement with the fluctuation-
dissipation theorem.50 Notice that a coupling very close to
Vint has already been considered by Thompson41 who inves-
tigated the damped motion of vortices driven by a magnetic
field.

The emission of a magnon k is represented by the term

Vem
k = �u − ẋ0�pvkĉk

†. �47�

Similarly the absorption by the domain wall of a magnon k is
represented by

Vab
k = �u − ẋ0�pvkĉk. �48�

The energy transfer from the domain wall to the spin waves
ensemble will correspond to the difference between the emis-
sion of magnons and the absorption of magnons.

In the following, the various states of the spin-wave en-
semble will be denoted by �En� and the density of state of the
spin waves will be represented by ��E�. By Fermi’s golden
rule, if the spin-wave ensembles were in the state �En�, then
the exchange of a magnon k between the domain wall and
the bath of the spin waves would statistically decrease the
domain wall energy by an amount Fn�k� as

Fn�k� = 2
�k
�
m

��Em�Vem
k �En��2��Em − En − ��k�

− �
m

��Em�Vab
k �En��2��Em − En + ��k�� ,

which can be written explicitly as

Fn�k� = 2
�k
�
m

��u − ẋ0�pvk�2��Em − En − �k�

− �
m

��u − ẋ0�pvk�2��Em − En + �k�� . �49�

In reality the probability for the spin-wave ensemble to re-
main in the state �En� is equal to the Boltzmann factor Pn
=exp�−�En�. The magnons k thus contribute to a transfer of
energy from the domain wall to the spin-wave ensembles by
an amount F�k�=�nPnFn�k�. In the continuum limit �nEn
→�dE, we find
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F�k� = �
0

�

dE ��E�f�E�FE�k� , �50�

where f�E�=exp�−�E� and FE�k� is

FE�k� = 2
�k��u − ẋ0�pvk�2

��
m

���Em − E − ��k� − ��Em − E + ��k�� .

In other words the energy lost by the domain wall through
the transfer of a magnon k is

F�k� = ��u − ẋ0�p�2�k
2vk

2R�k� , �51�

where the function R�k� is closely related to the spectral
function of the environment and is given by

R�k� = �
0

�

dE ��E�f�E�
2


�k
���E + �k� − ��E − �k��

with ��E� being the density of states ��E�=�m��Em−E� of
the spin-wave ensemble. The total energy lost by the domain
wall per unit of time F=�kFk is finally obtained as

F = �
k

��u − ẋ0�p�2�k
2vk

2R�k� . �52�

Let us introduce the dimensionless friction parameter �
=�k�k

2vk
2R�k�. The dissipation function can then be rewritten

as

F =
2�

NdwS
��u − ẋ0�p�2. �53�

Within this approximation, retardation effects of spin waves
are not included and therefore energy dissipation function is
found to be local in time. This limit corresponds to the limit
where the time scale of interest is much greater than the
correlation time of the magnons.41

B. � term

To understand how this dissipation function affects
current-induced domain wall motion, it is convenient to per-
form a Galilean transformation and use the local frame mov-
ing at the velocity of the spin current. The domain wall po-
sition in this frame is

q = x0 − ut . �54�

The dissipation function F=−dH /dt can be rewritten in
terms of q as

F =
2�

NdwS
�q̇p�2 �55�

and by treating q and p as independent variables, we find

F =
1

2

�F
� q̇

q̇ . �56�

If the system is translationally invariant �no extrinsic pin-
ning�, the Lagrangian describing the domain wall motion

will not depend on the domain wall position q,

L = − H +
�L
� q̇

q̇ , �57�

in which case the time derivative of the domain wall Hamil-
tonian becomes

dH
dt

= � d

dt

�L
� q̇

−
�L
�q

�q̇ . �58�

By combining Eq. �58� and the definition of the dissipation
function F, we obtain

d

dt

�L
� q̇

−
�L
�q

+
1

2

�F
� q̇

= 0, �59�

which, after carrying out Eqs. �24� and �55�, yields

ṗ +
2�p2

NdwS
ẋ0 =

2�p2

NdwS
u . �60�

The dissipation by spin-wave emission gives rise to a damp-
ing term 2�p2ẋ0 /Ndw proportional to the domain wall veloc-
ity ẋ0 and to a force 2�p2u /NdwS proportional to the spin
current u. These are equivalent to a damping coefficient �sw
and to a coefficient �sw expressed by

�sw = �sw =
�p2

NdwK�m
. �61�

It is seen that the spin-wave contributions �sw and �sw are
identical to each other and are also proportional to the do-
main wall kinetic energy p2 /2m.

The dissipation function generally tends to decrease dur-
ing the motion and vanishes at steady state. In the case of
Gilbert damping, which is described by the dissipation func-
tion F /2SNdw=��ẋ0 /	�2�1+�2�, dissipation drives the do-
main wall velocity ẋ0 to zero. In contrast, the spin waves
which lead to the dissipation function �55� will not tend to
lower the domain velocity ẋ0 but instead drive the relative
velocity q̇= �ẋ0−u� to zero. In other words, the dissipation
through spin-wave emission acts to drive the system toward
the state ẋ0=u, in contrast to pure Gilbert damping for which
the domain wall velocity is driven toward zero.

The equality between � and � restores Galilean invari-
ance, which has previously been argued by Barnes and
Maekawa.23 In our theory, this invariance is restored because
the dissipation channel, in this case the magnons, also
“flows” with the effective drift velocity u through the Dop-
pler effect. As such, the dissipation of the domain wall mo-
tion through spin-wave interactions leads to a Landau-type
damping in which the motion tends toward ẋ0=u. We con-
tend, therefore, that any dissipation channel that drifts at the
same velocity as the spin current u should lead to a similar
dissipation channel, for which we can write symbolically as
�drift=�drift. In the context of the analogy to Landau damp-
ing, the charged particles of the plasma resemble the domain
wall spins here and the field phase velocity is analogous to
the spin-current velocity u. We do not wish to stress this
analogy further as the details concerning the wave-particle
interaction are quite different from the interactions between
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the domain wall and magnons in our magnetic system.
Of course, extrinsic pinning centers such as magnetic im-

purities break the translational invariance of the wire, so dis-
sipation of the domain wall motion through coupling to such
impurities would not lead to a Galilean-invariant solution
ẋ0=u. Nevertheless, while we do not expect � and � to be
equal in general, we have identified an important dissipation
channel, i.e., spin-wave emission, that would tend to restore
this translational symmetry. This is one of the key results of
this paper.

C. Stochastic field

The force Fstoc �41� and the torque Tstoc �44�, which ac-
company the dissipation by the magnons, lead to a domain

wall motion that is stochastic. As ��̂k�=0 and �
̂k�=0, the
average values of Fstoc�t� and Tstoc�t� vanish identically but
their correlations are finite. Assuming the wire to be very
large compared to the domain wall width 	, the autocorrela-
tion of the force Fstoc is found to be

�Fstoc�t�Fstoc�t��� = ṗ�t�ṗ�t��� a

2
	
�32kBT

Ku
I�t − t�� + p�t�p�t��

��Ku

�
�2� a

2
	
�32kBT

Ku
J�t − t��

with

I�t − t�� =� d3k 	3��k
��2�


2
�2

sech2� kx	


2
� cos �k�t − t��

�k
3/2��k + ��1/2

�62�

and

J�t − t�� =� d3k 	3��k
��2�


2
�2

sech2� kx	


2
�

���k + �

�k
cos �k�t − t�� . �63�

I�t− t�� is presented in Fig. 5 with the anisotropy constants
Ku and K� taken to be those for Permalloy18 and Co/Pt.51 It
is seen that I�t− t�� cancels out very quickly when �t− t��
becomes larger than 1 ns. The function J�t− t�� behaves very
similarly to I�t− t�� and weakens very quickly when the time

difference �t− t�� increases. We therefore conclude that the
stochastic forces Fstoc�t� and Fstoc�t�� are not correlated with
each other at the characteristic time scale associated with
domain wall motion, which usually is longer than the
nanosecond.52 For instance, the time scale of a domain wall
at a typical velocity of 1 m/s in a Permalloy wire corresponds
to 	 / �1 ms−1��50 ns.

Analogously, the autocorrelation of the torque Tstoc�t� is
found to be

�Tstoc�t�Tstoc�t��� =
p�t�
m

p�t��
m

� a

2
	
�32kBT

Ku
I�t − t��

and the intercorrelation between the force Fstoc�t� and the
torque Tstoc�t�� is found to be

�Fstoc�t�Tstoc�t��� = ṗ�t�
p�t��

m
� a

2
	
�32kBT

Ku
I�t − t�� .

These correlations involve the same function I�t− t�� as be-
fore Eq. �62�. From this study on the spin-wave fluctuations,
we conclude that the stochastic force Fstoc and the stochastic
torque Tstoc behave as a multiplicative white noise on the
domain wall.

V. REDUCTION IN DOMAIN WALL WIDTH

External forces, such as a magnetic field or an electrical
current, lead to deformations of the domain wall profile. An
important consequence of such deformations is the genera-
tion of stray magnetic dipolar charges in the domain wall,
which collectively build up the kinetic energy of the domain
wall. Indeed, the kinetic energy K�	2p2 /2NdwS2 depends on
the transverse anisotropy K�, which for planar anisotropy
materials, such as Permalloy, results from dipolar charges
generated at the film surfaces that is associated with magne-
tization motion out of the film plane. Such wall deformation
arises when the domain wall moves, for example, in the vis-
cous regime in which the wall undergoes streaming motion
at constant velocity under an applied external magnetic
field.53 In this section, we show that the deformation due to
wall motion is not restricted to dynamics driven by a mag-
netic field but also appears in a similar manner under applied
electrical currents.

The domain wall deformation can be described in terms
of the modes cloc�t�, ck�t�, and ck

†�t�. In Sec. III A the mode
cloc�t� has been interpreted as the kinetic energy of the do-
main wall. In the present section, we show that the modes
ck

def�t� and ck
†def�t� can be interpreted as a reduction in the

domain wall width, which subsequently appears as a change
in the domain wall mass.

Departing from Lagrangian �34� and considering the
Euler-Lagrange equation with respect to ck

†, we obtain

−
S

2i
ċk = − ���k − S�u − ẋ0�

kx

2
�ck − �u − ẋ0�vkP

+ �u − ẋ0�S �
k�m

�iv−k,m�cm + c−m
† �

− ivm,−k�cm − c−m
† �� . �64�

−5 0 5−0.2

0

0.2

0.4
Py

−0.2 0 0.2−0.2

0

0.2

0.4
Co/Pt

FIG. 5. �Color online� �a� Correlation function I�t− t�� between
the stochastic torque Tstoc�t� at two different times t and t� for a wire
of Permalloy �Ref. 18� with K� /Ku=57 and � /Ku=1.88 ns. �b�
I�t− t�� for a wire of Co/Pt �Ref. 51� with K� /Ku=0.73 and
� /Ku=0.013 ns.
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The mode ck has two components ck
th and ck

def. The fast com-
ponent ck

th�t� �e.g., �4 GHz in Permalloy� represents the
thermal excitations, whereas the slow component ck

def �e.g.,
�20 MHz for dx0 /dt=1 m /s in Permalloy� represents wall
deformation. As the differential equation �64� is linear, the
components ck

th and ck
def can be calculated independently. The

slow component ck
def is almost static ċk

def=0 and corresponds
to the “static” particular solution of Eq. �64�. In contrast the
fast component of ck has no static part and is a homogeneous
solution of Eq. �64�.

Let us calculate the deformation mode ck
def from Eq. �64�

by approximating ċk
def=0. It is useful to consider the Taylor

expansion of ck
def with respect to the relative velocity u− ẋ0,

ck
def = �

n�1
gn�u − ẋ0�n. �65�

Since the domain wall is much slower than the propagating
spin waves �u− ẋ0� /	��k, it is sufficient to keep only the
first order in the Taylor expansion �65�,

ck
def � g1�u − ẋ0� . �66�

One readily obtains

ck
def � −

�u − ẋ0�vk

��k
p . �67�

Therefore the deviation ��def in the spherical angle � due to
deformation is

��def = �
k

�ck
def + c−k

def���k
��k, �68�

��def = − 2�
k

�u − ẋ0�p
��k

��k
��2


2
sech� kx	


2
� 1
��kN

�k.

�69�

By letting ��k
��2= �1 /4����k+�� /�k and p= �ẋ0−u�m, one

finds

��def =



4 �
k

S2�u − ẋ0�2

KuK�	

1

�k

N�

a
sech� kx	


2
� 1
��kN

�k.

�70�

Let us now calculate the deformation angle ��def corre-
sponding to a change �	 in the domain wall width. Its com-
parison to Eq. �70� will then allow us to estimate �	. The �
angle describing the magnetization inside a Bloch domain
wall is

�0�x� = 
 + cos−1
tanh� x − x0

	0
�� . �71�

If the domain wall width is modified by the spin current by
an amount �	�u�, the actual magnetization profile � will
deviate from the equilibrium Bloch profile �0 by

� = �0 −
x − x0

	2 �1 + tanh2� x − x0

	0
��	 . �72�

The deformation angle ��def�r−r0�=��r�−�0�r� can be ex-
panded on the wave functions �k�r−r0� as

���r − r0� = �
k

pk�k�r − r0� , �73�

where

pk =� d3r

a3 ���r��−k�r� ,

=−� d3r

a3

x − x0

	2 �1 + tanh2� x − x0

	0
��	�−k�r� .

Only the real part of the wave function �−k�r� will contribute
to pk,

Re��−k�r�� =
1

�N�k

cos�kx�x − x0��tanh� x − x0

	
�

+ kx	 sin kx�x − x0��cos�k� · r� .

Accordingly,

pk = −
�	

a

N�


�N�k

sech� kx	


2
� . �74�

Hence the change �	 in the domain wall width corresponds
to the deformation angle

��def = − �
k

�	

a

N�


�N�k

sech� kx	


2
��k. �75�

By comparing Eqs. �70� and �75� and by approximating �k
�1, we finally obtain

�	

	
= −

1

4

S2�u − ẋ0�2

KuK�	2 . �76�

Equation �76� shows that the domain wall shrinks under the
effect of spin-transfer torque. According to Eq. �40�, this
reduction in width leads to a force Fdef that is nonlinear with
respect to the relative velocity u− ẋ0,

Fdef = − c
d

dt

p

S2�u − ẋ0�2

KuK�	2 � �77�

with c= �
 /32��−�
+�dkx sech2�
kx /2� / �1+kx

2��0.1. In the
case of Permalloy nanowires, K� represents the demagnetiz-
ing energy and cancels with the factor S2 in the numerator in
Eq. �77�. Therefore Fdef does not depend strongly on the
transverse anisotropy K�.

The deformation force Fdef can be reinterpreted as a modi-
fication of the kinetic momentum and of the mass of the
domain wall. As the domain wall deforms, its kinetic mo-
mentum becomes

p + �p = p�1 +
3cS2�u − ẋ0�2

K�A
� , �78�

which corresponds to a change in mass,
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�m

m
=

6c

A�0
�u − ẋ0�2� �

g�B
�2

. �79�

The modifications of the domain wall mass and of the do-
main wall width, for which the relative changes are almost
identical in magnitude but differ in sign, �m /m�−�	 /	, are
represented in Fig. 6 as a function of the relative velocity
�u− ẋ0� and for different values of the exchange stiffness con-
stant A.

VI. TEMPERATURE DEPENDENCE OF THE DOMAIN
WALL MASS

The flow of an electrical current through a ferromagnetic
wire modifies the spectrum of the magnons according to Eq.
�33�, which thereby shifts their average kinetic momentum to
a finite value k=�kknB�k� /�knB�k�. The applied electrical
current therefore leads to a magnon current. Inside a domain
wall, magnons behave slightly differently because of the sin-

gular coupling potential −S�u− ẋ0��kmvkm
̂k�̂m �34�. This
potential may be interpreted as a modification of the domain
wall energy due to its interaction with the spin-wave envi-
ronment. This section is devoted to this coupling potential,
whereby we investigate its consequences on the domain wall
dynamics. Specifically, this potential will be shown to con-
tribute to the forces Fj �39� and FH �38� on the domain wall.

The relationship between the forces Fj and FH and the
statistics of the magnons will be established in Sec. VI A.
The force Fj arising from the dc component of u will be
carried out in Sec. VI B and the force FH arising from the ac
component u�t� will then be calculated in Sec. VI C. Both
these forces will be reinterpreted as a modification of the
effective mass of the domain wall. The domain wall mass
will in turn become sensitive to the actual temperature of the
ferromagnetic wire.

A. Forces Fj and FH

While the force Fj depends on the correlation ����
� be-
tween �
 and ��, the force FH depends on the autocorrela-
tion ��
2� and ���2�. These correlations, which are finite

under the effect of an electrical current, can be calculated
with perturbation or linear-response theory. In order to keep
the notation as simple as possible, we will employ a 2�2
matrix representation for the response functions; details con-
cerning this notation can be found in the Appendix.

The correlations between the angular deviations �� and
�
 are well described by the lesser magnon Green’s function
D��r , t ,r� , t�� defined as

i�D� = � ��
�r�,t���
�r,t�� ����r�,t���
�r,t��
��
�r�,t�����r,t�� ����r�,t�����r,t��

� .

The representation of the lesser function in the momentum
space D��k , t ,k� , t�� is obtained by expanding �
 and �� on
the wave functions �k, according to Eqs. �18� and �19�. The
representation in momentum space is quite useful as it re-
veals the relationship between the angular deviations �� ,�

and the statistics of the magnons.

The force FH depends on the diagonal component of the
lesser function D�

�=D


� =D��

� ,

FH = �
kq

fH�k,q�i�D�
��k−,t,k+,t� , �80�

where k−=k−q /2 and k+q /2 and

fH�k,q� = −
Ku

3	

2


L

1

i
sech�
	qx

2
�	qx

�

1 + 3�kx	�2 +
�qx	�2

4

��k−
�k+

��k−


 �k+


 + �k−

� �k+

� � .

�81�

The force Fj depends on the off-diagonal component of the
lesser function Doff

� =D�

� ,

Fj = �
kq

f j�k,q�
d

dt
i�Doff

� �k−,t,k+,t� �82�

with

f j�k,q� = − Sv−k−,k+
. �83�

We recall that the coefficient v−k−,k+
is defined in Eq. �32�

and that the coefficients �k

 and �k

� are given in Sec. III B.
As fH�k ,q� is an odd function in q and an even function in

k, the force FH will be finite if D�
��k− , t ,k+ , t� is odd in q and

even in k. It will be shown in Sec. VI C that the nonadiabatic
response of the spin waves to a dynamical spin current u�t�
gives rise to such a lesser Green’s function D�. Furthermore,
as f j�k ,q� is odd in k and even in q, Fj will be finite if
Doff

� �k− , t ,k+ , t� is odd in k and even in q. We will see in Sec.
VI B that this is the case for the adiabatic response of the
spin waves to a dc spin current u.

B. Adiabatic response

The process in Fig. 7 depicts the adiabatic transfer of
kinetic momentum between the propagating magnons and
the domain wall, which arises from the coupling potential V

0 50 100 150 200
0

0.1

0.2

0.3

0.4
A=5.10−12 J/m
A=10.10−12 J/m
A=25.10−12 J/m
A=50.10−12 J/m

FIG. 6. �Color online� Modification of the domain wall mass m
and of the domain wall width 	 as a function of the relative velocity
�u− ẋ0� and the exchange stiffness constant A.
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�35�. Due to adiabaticity, the energies of the incoming mag-
non k− q

2 and the outgoing magnon k+ q
2 are identical.

The statistics of the magnons perturbed by the coupling
potential V can be investigated by expanding the contour-
ordered magnon propagator D�k− q

2 ,k+ q
2 ,� ,��� up to the

first order in V,

D�1��k−,�,k+,��� = − S�u − ẋ0��
C

d�1 iv−k−,k+
��1�

�D�0��k−,� − �1��yD�0��k+,�1 − ��� .

�84�

In Eq. �84� the superscript �0� represents equilibrium �ẋ0
=u�, whereas the superscript �1� represents first-order pertur-
bation theory. The lesser Green’s function D�k− ,k+ , t− t��
can be obtained from the time-ordered Green’s function with
the Langreth formula �DD��=DrD�+D�Da and the
fluctuation-dissipation theorem,

D�0���k,�� = nB����D�0�r�k,�� − D�0�a�k,��� . �85�

By denoting Im�z� the imaginary part of z and

I = �1 0

0 1
�, �y = �0 − i

i 0
� ,

the lesser Green’s function is found in terms of the retarded
�Eq. �A7�� and advanced �Eq. �A8�� propagators as

D�1���k−,k+,�� = 4S�u − ẋ0�v−k−,k+
nB���

��I Im�g+
�0�r�k−,��g+

�0�r�k+,�� − g−
�0�r�k−,��g−

�0�r�k+,���

+ �y Im�g+
�0�r�k−,��g+

�0�r�k+,�� + g−
�0�r�k−,��g−

�0�r�k+,���	 .

�86�

From this equation, we can infer that D�
�1���k− , t ,k+ , t�=0.

Thus by inspection the adiabatic response of the spin waves
to �u− ẋ0� does not contribute to the force FH �80�. In con-
trast, the off-diagonal component Doff

�1���k− ,k+ , t� of the
lesser Green’s function is finite when the domain wall veloc-
ity differs from the velocity of the spin current ẋ0�u. It is
found to be

i�Doff
�1���k−,k+,t� = − 8
S�u − ẋ0�v−k−,k+


 �nB��k�
��

�
and leads to a force Fj �82�

Fj = −
dp

dt

8
K�	2

Ndw
�
k,q

�nB��k�
��

�v−k−,k+
�2. �87�

Being proportional to dp /dt, the force Fj may be reinter-
preted as a modification of the domain wall mass. In thin
films in which the magnetization can be approximated to be
uniform over the thickness of the film, the change in the
domain wall mass is found to be

�m

m
=

kBTa2

A

2


Nz
���,Ly� , �88�

where Nz represents the number of atomic layers that consti-
tute the film thickness, a is the lattice constant, Ly represents
the width of the wire, and ��� ,Ly� is a function of Ly and the
anisotropies �=K� /Ku. The change in the mass �m /m is
presented in Fig. 8 as a function of the wire thickness h
=Nza and for different values of the temperature. In a Per-
malloy wire with a cross section 2�100 nm2, the mass of
the domain wall varies by �5% between T=0 K and T
=600 K. This variation of the domain wall mass could be
much larger near the Curie temperature Tc�750 K.

C. Nonadiabatic response

The process in Fig. 9 shows the nonadiabatic transfer of
kinetic momentum between the propagating magnons and

q
k − q

2, ω

k + q
2, ω

FIG. 7. Representation of the force Fj created by the spin waves
when the relative velocity u− ẋ0 is finite and the motion is adiabatic.
The wavy line represents the magnon q exchanged with the domain
wall, the vertex � arises from the force Fj and the vertex � repre-
sents the potential V.

0 5 10−0.2

−0.15

−0.1

−0.05

0

T=50K
T=300K
T=600K

FIG. 8. �Color online� Modification of the domain wall mass
�m /m as a function of the wire height h, for different temperatures
T, assuming Ly =100 nm and �=57.

k − q
2, ω − Ω

2

k + q
2, ω + Ω

2

q, Ω

FIG. 9. Representation of the force FH created by the spin
waves when the excitation of the spin waves by the spin current is
not adiabatic. The wavy line represents the momentum q exchanged
with the domain wall and the energy � transferred by the spin
current; the vertex � arises from the force FH and the vertex �
represents the mixing potential V.
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the domain wall, which arises from the coupling potential V
�35� when the domain wall is accelerating. Through this pro-
cess, the energy of magnons is not conserved.

In the following, the domain wall motion is assumed to be
harmonic u�t��ei�t. This assumption will allow us to calcu-
late the linear response of the spin waves to the domain wall
acceleration in a more tractable way. The frequency � of the
domain wall acceleration �e.g., �10 MHz� is much lower
than the spin-wave eigenfrequencies �k ��5 GHz� but still
induces an overlap between the different spin-wave modes.
As the actual overlap between the spin waves depends on
their spectral linewidth, the lifetime �k of the magnons is a
key physical quantity in this problem. According to the phe-
nomenological Gilbert damping, each magnon k has a life-
time �k inversely proportional to its eigenfrequency and to
the Gilbert coefficient �k

−1=��k. The linewidth of each spin-
wave mode is therefore about �f =0.01�4 GHz
�40 MHz. As the wire length Lx is generally much larger
than the domain wall width 	, the energy gap between the
peaks of two consecutive spin-wave modes is on the order of
�KuK��2
	 /Lx�2 /2�5 MHz.

For the sake of determining the linear response of the spin
waves to the domain wall acceleration, we use the Dyson
equation �84� as a starting point. As � /�k�1, we linearize
D�1�� with respect to �,

D�1���k −
q

2
,k +

q

2
,�,� + ��

= − iu−k+qÕ2,k+qÕ2�− ��
 �nB���
��

�
���D�0�r�k −

q

2
,���yD�0�a�k +

q

2
,�� . �89�

The diagonal component of the lesser magnon Green’s func-
tion is then obtained as

D�
�1���k−,t,k+,t� =

�S

m

dp

dt
kBT �kx,qx� �90�

with

 �kx,qx�

=
	

L
kxqx	

2 csch�
	qx

2
�4


�k−


 �k+

�

��k−
�k+

� d�

�

�
�k+

− �k−

���� − �k−
�2 + ���k−

�2����� − �k+
�2 + ���k+

�2�
.

The force FH due to this nonadiabatic interaction is derived
by carrying over the magnon Green’s function �90� to the
definition of the force �80�. Because it is proportional to
dp /dt, the force FH can be reinterpreted as a modification of
the domain wall mass. The contributions of the transverse
spin-wave modes ny to �m /m are shown in Fig. 10 for dif-
ferent values of the temperature. The latter figure indicates
that the change in the domain wall mass is in general less
than 1/1000. This implies that the nonadiabatic response of
the spin waves to the domain wall acceleration does not af-

fect domain wall motion significantly. This is in contrast with
the adiabatic response of the spin waves �Sec. VI B�.

VII. DISCUSSION AND CONCLUSION

We have developed a theory of current-driven domain
wall dynamics in magnetic wires which takes into account
interactions between the domain wall and propagating spin
waves. In general, a spin current u traversing the magnetic
medium will lead to an interaction between the domain wall
and the propagating spin-wave modes. This interaction is
proportional to the kinetic energy of the domain wall, m�u
− ẋ0�2 /2. As this kinetic energy is governed by the difference
between the spin current u and the domain wall velocity ẋ0, a
domain wall moving at the spin-current velocity will not
interact with the spin waves. This coupling between the do-
main wall and the propagating magnons is shown to have
two main effects on the domain wall dynamics: �1� damping
of the domain wall motion and �2� renormalization of the
domain wall effective mass. Dissipation associated with the
emission of magnons is found to drive the wall velocity to-
ward the spin-current velocity u, such that the relative veloc-
ity ẋ0−u is minimized. This dissipation process is analogous
to Landau dissipation in plasmas. The renormalization of the
domain wall effective mass has two origins: the reduction in
the domain wall width and the renormalization of the domain
wall energy by thermal magnons.

In the presence of Gilbert damping and additional spin-
wave interactions, our extended one-dimensional model of
Bloch wall dynamics is given by

ṗ +
2K�m�

S
�� +

�p2

NdwK�m��ẋ0 =
2K�m�

S
�� +

�p2

NdwK�m��u

�91�

and

p

m�
= ẋ0 − u −

�S

2m�K�

p . �92�

The effective mass m� takes into account the deformation of
the domain wall and its coupling to the magnons. As such, it
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FIG. 10. �Color online� Contribution of the transverse spin-wave
modes ny to the change in the domain wall mass �m /m. Ly

=400 nm, �=0.01, and �=K� /Ku=57.
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depends on the actual temperature of the wire. The emission
of magnons, which is parametrized by the dimensionless co-
efficient �, is important if the coefficient � is close to 1.

The equation of motion �91� shows explicitly how mag-
non emission, which contributes to the dissipation of the do-
main wall motion, also contributes with the same magnitude
to the nonadiabatic � term. In the limit in which the only
dissipation channel for domain wall motion is through the
interaction with spin waves, we find that Galilean invariance
is restored and �=�. This result can be generalized for dis-
sipation involving any subsystem to which the domain wall
is coupled that drifts at the same velocity as the spin current
u. Our spin-wave result provides a natural explanation as to
why the magnitudes of � and � are often found to be very
similar in experiment. However, we expect Galilean invari-
ance to be broken in realistic systems due to the presence of
inhomogeneities, magnetic impurities, and ultimately the na-
ture of the underlying atomic crystal. As such, we do not
expect � and � to be strictly equal in general. Nevertheless,
the key result here, whereby spin-wave emission in the pres-
ence of purely adiabatic torques gives rise to an apparent
nonadiabatic term, highlights the importance of identifying
the translational symmetry of relevant dissipation processes
for any subsequent study of the nonadiabatic contributions to
current-driven domain wall motion.

Results �91� and �92� may appear inconsistent in the sense
that Gilbert damping is included for the domain wall and not
for the spin waves. While we have not included damping
explicitly for the spin-wave system, dissipation of magneti-
zation from the spin-wave system toward other thermal baths
�e.g., phonons and magnetic impurities� is implied in our
treatment of domain wall damping. In the context of the
Caldeira-Leggett approach, our method relies on drawing the
analogy between the domain wall �spin-wave� system and
the massive particle �harmonic oscillator� system. It is im-
plicitly assumed that any energy transferred from the domain
wall �massive particle� to the spin waves �thermal bath of
oscillators� will be dissipated rapidly from the spin-wave
system, such that there would be no transfer of energy back
into the domain wall motion. As such, we have implicitly
assumed a damping in the spin-wave system but we have not
used Gilbert’s model explicitly to that effect. For example, it
is known that other higher-order magnon interaction pro-
cesses, such as three- or four-magnon process,30 lead to de-
coherence or dissipation of a spin-wave mode on time scales
that are much faster than domain wall motion; such pro-
cesses would contribute to the damping of the domain wall
motion.

Equations �91� and �92� describe current-induced domain
wall motion by including some mechanisms that depend on
the temperature. Temperature enters domain wall dynamics
through the domain wall mass m� and also possibly through
the emission coefficient �. According to Yamaguchi et al.,35

the temperature inside ferromagnetic nanowires studied in
experiment may approach the Curie temperature Tc as a re-
sult of Joule heating. According to our theory, such an in-
crease in the temperature would appear as a renormalization
of the domain wall mass. Our calculation suggests that a
change in the domain wall mass of about 5% can occur for
variations in temperature between T=600 K and T=0 K.

This change becomes even more important close to the Curie
temperature Tc. Laufenberg et al.32 found a significant de-
crease in the spin-transfer efficiency, which is proportional to
�, when the temperature was increased by few hundreds of
kelvin above ambient temperatures. These authors have sug-
gested emission of magnons to be responsible for this loss of
efficiency. In the context of our theory, this could be ex-
plained by the decrease in magnetization that accompanies
any increase in temperature, which would contribute to a
larger � �and �� because of the reduction in K�.

According to the present theory, current-driven domain
walls might be viewed as the generators of spin waves. One
experimental realization of such spin-wave generation is pro-
posed in Fig. 11, where we show a domain wall pinned in-
side a wire that is traversed by a dc spin current. The action
of the spin current, as we have discussed in some details
above, acts to deform the domain wall and gives rise to a
nonequilibrium magnetic configuration. As its velocity van-
ishes ẋ0=0, its energy m��u− ẋ0�2 /2 will become very large.
A part of this energy will then be dissipated to the medium
through the emission of magnons.
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APPENDIX: PROPAGATORS

The magnon propagators allow the linear response of the
spin waves to be derived in a very tractable way. The mag-
non propagators are defined by means of the magnon opera-

tors �̂k= ĉk+ ĉ−k
† and 
̂k= 1

i �ĉk− ĉ−k
† �. Specifically the time-

ordered magnon propagator D���k ,k� , t , t�� for � ,�
� �
 ,�	 is defined as

D���k,k�,t,t�� = −
i

�
� �T�̂k�t��̂−k��t��� � �A1�

with

FIG. 11. �Color online� Proposed experiment for spin-wave
emission. A dc power supply Vdc generates a charge current jc,
which in turn excites a domain wall pinned inside a wire. As the
spin current u is finite but at the same time the domain wall is fixed,
the relative velocity u− ẋ0 is finite and spin waves are emitted.
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T�̂k�t��̂−k��t�� =��̂k�t��̂−k��t�� if t � t�

�̂−k��t���̂k�t� if t � t�
� .

It is useful to let the times t and t� belong to a contour in the
complex plane, which allows the Green’s function �A1� to
contain information on the nonequilibrium properties of the
spin waves. The lesser and greater propagators are defined as

D��
� �k,k�,t,t�� = −

i

�
� ��̂−k��t���̂k�t�� � ,

D��
� �k,k�,t,t�� = −

i

�
� ��̂k�t��̂−k��t��� � ,

respectively, and the retarded and advanced propagators are

D��
r �t,t�� = 
�t − t���D��

� �t,t�� − D��
� �t,t��� ,

D��
a �t,t�� = 
�t� − t��D��

� �t,t�� − D��
� �t,t��� ,

respectively. To simplify the notation, we represent the vari-
ous magnon propagators by means of 2�2 matrices in the
form

D�k,k�,�,��� = �D
,
�k,k�,�,��� D
,��k,k�,�,���

D�,
�k,k�,�,��� D�,��k,k�,�,���
� .

We use the interaction picture with respect to the unper-
turbed spin-wave Hamiltonian H0=�k��kck

†ck. The creation
and annihilation operators of the magnons have the time de-
pendences ĉk�t�= ĉke−i�kt and ĉk

†�t�= ĉk
†ei�kt.

Before calculating the response of the spin waves to the
coupling potential V, the unperturbed propagators need to be
determined. The free retarded and the free advanced magnon
propagators are obtained as

D�0�r�k,�� = � I + �y

�� − �k + i0
−

I − �y

�� + �k + i0
� �A2�

and

D�0�a�k,�� = � I + �y

�� − �k − i0
−

I − �y

�� + �k − i0
� . �A3�

The free lesser Green’s function is given by the fluctuation-
dissipation theorem

D�0���k,�� = nB����D�0�r�k,�� − D�0�a�k,��� . �A4�

It is useful to introduce the electronlike propagators
g�

�0�r�k ,�� and g�
�0�a�k ,�� defined as

g�
�0�r�k,�� =

1

�� ! �k + i��k
�−1� , �A5�

g�
�0�a�k,�� = „g�

�0�r�k,��…�. �A6�

These propagators are related to the magnon propagators
�A2� and �A3� through

D�0�r = �I + �y�g+
�0�r − �I − �y�g−

�0�r �A7�

and

D�0�a = �I + �y�g+
�0�a − �I − �y�g−

�0�a. �A8�

The products of the retarded and advanced free magnon
propagators, which appear throughout the calculation of the
response, can be readily computed by using Eqs. �A8� and
�A7� and by noticing that �I+�y��I−�y�=0 and �I��y�2

=2�I��y�.
The scattering potential V �35� may be divided into a

linear term and a “second-order” term with respect to
the propagating modes. The linear term does not perturb
the correlations of the spin waves since �Tĉk

†ĉk�ĉk��=0
and �Tĉk

†ĉk�ĉk�
† �=0. However the second-order term

−S�u− ẋ0��kmvkm
̂m�̂k modifies these correlations. In the
following we assume the coefficient vkm to be odd,

vkm = − vmk. �A9�

Strictly speaking, this assumption does not rigorously hold in
the general case ��0; however, the plots in Fig. 12 suggest
this to be a good approximation.

In the interaction picture, the contour-ordered magnon
propagator is given by

D���k,k�,� − ���

= −
i

�
� �T exp�−

i

�
�

C

d�1 V��1���̂k����̂−k������ � .

�A10�

The linear-response theory focuses on the first-order expan-
sion of D���k ,k� ,�−��� with respect to the coupling poten-
tial V. We use the superscript �1� to denote the first-order
expansion of the magnon propagator. Recalling Wick’s theo-
rem and using relationship �A9�, we readily obtain

D��
�1��k,k�,�,��� = �

C

d�1 u−kk���1��D�

�0��k,� − �1�

�D��
�0��k�,�1 − ��� − D��

�0��k,� − �1�

�D
�
�0��k�,�1 − ���� .
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FIG. 12. �Color online� �a� Odd part �vkm−vmk� /2 of coefficient
vkm. �b� Even part �vkm+vmk� /2 of coefficient vkm.
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Employing the 2�2 matrix notation, we finally find

D�1��k,k�,�,��� = �
C

d�1 iu−kk���1� �A11�

�D�0��k,� − �1��yD�0��k�,�1 − ��� . �A12�

Equation �A12� expresses the linear response of the spin
waves to the coupling potential V �35�.
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